SECTOR AREAS AND ARC LENGTH

Pearson Edexcel – Thursday 4 June 2020 - Paper 2 (Calculator) Higher Tier

1.

7	35.3	P1	for starting the process to find length of third side of triangle, eg $9^2 - 6^2$ (= 45) or $6^2 + x^2 = 9^2$ for $\sqrt{9^2 - 6^2}$ or $\sqrt{81 - 36}$ or $\sqrt{45}$ or $3\sqrt{5}$ (= 6.7) or $r^2 = 45$	
		P1 A1	for stating or using $\pi \times [\text{radius}]^2 \div 4$ for answer in range 35.2 to 35.4	[radius] is any value If an answer in the range 35.2 to 35.4 is given in the working space then incorrectly rounded, award full marks No working, answer only, no marks

Pearson Edexcel – Thursday 4 June 2020 - Paper 2 (Calculator) Higher Tier

2.

18	160π	P1	for process to find curved surface area of cone, eg $\pi \times 10 \times 25$ (= 250 π) (= 785)	
		P1	for process to find the radius or diameter of the smaller cone eg $10 \times \frac{15}{25}$ (= 6) or $20 \times \frac{15}{25}$ (= 12) oe OR uses area scale factor, eg "250 π " × $\left(\frac{15}{25}\right)^2$ (= 90 π)	$\frac{15 \text{ comes from } 25 - 10}{25 \text{ may be seen as } 0.6}$
		P1	for a complete process, eg " 250π " – π × "6" × 15 (= 785 – 282) or answer in range 502 to 503	
		Al	for 160π	Award 0 marks for an answer of 160π or an answer in range 502 to 503 with no supportive working. If 160π seen but answer in range 502 to 503 given on answer line isw and award full marks

Pearson Edexcel – Monday 8 June 2020 - Paper 3 (Calculator) Higher Tier

19	Proof	Pl	for start to process to find area of <i>ABCDEF</i> , eg area of equilateral triangle $=\frac{1}{2} \times x \times x \times \sin 60 \ (=\frac{\sqrt{3}}{4}x^2)$ OR for start to process to find area of <i>FGHIJK</i> , eg area of equilateral triangle $=\frac{1}{2} \times px \times px \times \sin 60 \ (=\frac{\sqrt{3}}{4}p^2x^2)$	Any correct process to find the area of part of the hexagon is acceptable for this mark, eg $\frac{1}{2} \times x \times x \times \sin 120$ or $\frac{1}{2} \times (x + 2x) \times \frac{\sqrt{3}}{2}x$
		Pl	for complete process of finding area of <i>ABCDEF</i> , eg $6 \times \frac{1}{2} \times x \times x \times \sin 60$ or $6 \times \frac{1}{2} \times x \times x \times \frac{\sqrt{3}}{2}$ $\left(= \frac{3\sqrt{3}}{2} x^2 \right)$ oe	Allow sin 60 left in expressions for the first 3 marks.
			for complete process of finding area of <i>FGHIJK</i> , eg $6 \times \frac{1}{2} \times px \times px \times \frac{\sqrt{3}}{2} = \left(= \frac{3\sqrt{3}}{2} p^2 x^2 \right)$ oe	
		PI	for process of finding area of <i>ABCDEF</i> eg $\frac{3\sqrt{3}}{2}x^2$ oe AND for process of finding area of <i>FGHLJK</i> , eg $p^2 \times \frac{3\sqrt{3}}{2}x^2$ oe	
		CI	correct algebra leading to given result, $\frac{3\sqrt{3}}{2}(p^2-1)x^2$	Accept $\frac{3\sqrt{3}}{2}x^2(p^2-1)$ as final result.

Pearson Edexcel - Thursday 6 June 2019 - Paper 2 (Calculator) Higher Tier

4.

12	25.4	(P1 P1	for finding the size of the angle eg $\frac{40 \times 360}{\pi \times 7^2}$ (=93.5(4)) or for working with proportion, eg $\frac{40}{49\pi}$ (=0.259(8) or 0.26) or $\frac{49\pi}{40}$ (=3.84(8) or 3.85) for finding the area of the circle eg $\pi \times 7^2$ (=153(.938) or 154)) (dep on P2) for a process to find the arc length, eg $\frac{"93.5(4)"}{360} \times \pi \times 2 \times 7$ (=11.4(28)) or $\frac{40}{49\pi} \times \pi \times 2 \times 7$ (=11.4(28)) or $\pi \times 2 \times 7 \div \frac{49\pi}{40}$ (=11.4(28))	May be embedded
		Al	for answer in the range 25 to 25.44	If an answer is shown in the range in working and then incorrectly rounded award full marks. Accept $\frac{178}{7}$

Pearson Edexcel - Tuesday 6 November 2018 - Paper 1 (Non-Calculator) Higher Tier

7	shown	C1	for method to find area of semicircle, eg $\pi \times 10^2 \div 2 \ (= 50\pi)$	Can award first 3 marks if a value for π is used
		C1	for method to find area of quarter circle, for $\pi \times 20^2 \div 4 \ (= 100\pi)$	
		C1	for a complete method to find area shaded and area of square, eg $\pi \times 20^2 \div 4 - \pi \times 10^2 \div 2$ and 20×20	Working out to find the area of the shaded region must be shown
		C1	fully correct working leading to $\frac{\pi}{8}$	

Pearson Edexcel - Thursday 2 November 2017 - Paper 1 (Non-Calculator) Higher Tier

6.

4	Daisy is wrong	P1	for process to find area of any relevant circle ie $\pi \times 4^2 (=16\pi)$, $\pi \times 7^2 (=49\pi)$, $\pi \times 10^2 (=100\pi)$ or 7^2 and 4^2
	(supported)	P1	for completed method to find shaded area eg " $\pi \times 7^2$ " – " $\pi \times 4^2$ " (=33 π) or use of radii eg $7^2 - 4^2$ (=33)
		A1	for 2 comparable figures, eg 33π and 100π or 33 and 100 or 103 to 103.7 and 314 to 314.2 or 103 to 103.7 and 104.6 to 104.8
		C1	statement eg No because it should be $\frac{33}{100}$ and their accurate figures
			Allow use of $\pi = 3$ or better

Pearson Edexcel - Monday 6 November 2017 - Paper 2 (Calculator) Higher Tier

7.

20	 68.5	B1	for angle $OAB = 90^{\circ}$ or angle $OCB = 90^{\circ}$, may be seen on diagram
		P1	for a process to find the length of AB or the length of CB (= $10\sqrt{3}$ oe) eg $10 \times \tan 60^\circ$ (= 17.3) or the length of OB (= 20), eg $10 \div \cos 60^\circ$
		P1	for a process (dep previous P1) to find the area of the triangle OAB (= $50\sqrt{3}$ oe) or area of triangle OCB (= $50\sqrt{3}$ oe) or area of kite $OABC$ (= $100\sqrt{3}$ oe)
		P1	for a process to find the area of the sector <i>OAC</i> e.g. $\frac{1}{3} \times \pi \times 10^2$ (= 104.7),accept rounded or truncated to 3 significant figures or more
		A1	for 68.4 – 68.6

Pearson Edexcel - Thursday 8 June 2017 - Paper 2 (Calculator) Higher Tier

8.

17	66.5	B1	for recognising an angle of 60 at AOB
		P1	for a process to find the area of the sector,
			e.g. $\frac{{}^{6}60^{\circ}}{360} \times \pi \times 11^{2} = 63.3$ or $\frac{121\pi}{6}$
		P1	for a process to find the area of the triangle,
			e.g. $\frac{1}{2} \times 7^2 \times \sin 60'' \ (=21.2 \text{ or } \frac{49\sqrt{3}}{4})$
		P1	for a process to find the required percentage,
			eg. "63.3." "21.2." × 100
		A1	for answer in the range 66.5 to 66.6

Pearson Edexcel - Tuesday 13 June 2017 - Paper 3 (Calculator) Higher Tier

18	Note DOC=DOA,	21.6	Pl	Recognises that OAD or OCD is 90° or right angle
	ADO=CDO		P1	for using trigonometry to set up an equation in DOA or ADO
	1941 - Santon State			$eg Cos DOA = \frac{5}{9}$
			P1	for using inverse trigonometry to find DOA or ADO
				$eg\ DOA = Cos^{-1} \frac{5}{9} \ (= 56.25)$
			P1	for a complete process to find arc length ABC or AC
			1000000	eg $\frac{360-2\times"56.25"}{360}\times2\times\pi\times5$ (=21.598) or $\frac{2\times"56.25"}{360}\times2\times\pi\times5$ (=9.8174)
			A1	for answer in the range 21.5 to 21.65

Pearson Edexcel - Specimen Papers Set 2 - Paper 1 (Non-Calculator) Higher Tier

10.

2	16 ÷ 4	<u>5</u> 8	P1	Using side lengths of 4
	$\frac{\frac{1\times4}{2}}{\frac{2\times4}{2}} = 2 \text{ or } \frac{1}{2} \times \frac{1}{4} = \frac{1}{8}$ $\frac{2\times4}{2} = 4 \text{ or } \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$	8	P1	Method to find fraction or area for one unshaded triangle
	$\frac{1\times4}{2} + \frac{2\times4}{2} = 6 \text{ or } \frac{1}{2} \times \frac{1}{4} + \frac{1}{2} \times \frac{1}{2} = \frac{3}{8}$		P1	Method to complete fraction or area for total unshaded region
	$16 - 6 = 10 \text{ or } 1 - \frac{3}{8} = \frac{5}{8}$		P1	Method to find total fraction or area for shaded region
			A1	for $\frac{5}{8}$ oe or 0.625

Pearson Edexcel - Specimen Papers Set 2 - Paper 2 (Calculator) Higher Tier

11.

7	$\frac{1}{4} \times \pi \times 4.8^2$	6.58	B1	for use of formula for area of a circle
	$\frac{1}{2} \times 4.8 \times 4.8$ $\frac{1}{4} \times \pi \times 4.8^{2} - \frac{1}{2} \times 4.8 \times 4.8$		P1 A1	for complete process to find area of shaded region for 6.56 – 6.58
	-			

Pearson Edexcel - Specimen Papers Set 2 - Paper 3 (Calculator) Higher Tier

12.

	1			
16		18.2	M1	260 100
				for $\frac{200}{3} \times \pi \times 8$ oe or $\frac{100}{3} \times \pi \times 8$ oe
				for $\frac{260}{360} \times \pi \times 8$ oe or $\frac{100}{360} \times \pi \times 8$ oe
			A1	for 18.1 to 18.2
			AI	101 16.1 to 16.2

Pearson Edexcel - Sample Paper 2 - (Calculator) Higher Tier

13.

1	ı	ı		
17		4.89	M1	40
				$\xrightarrow{40} \times 2 \times \pi \times 7$ oe
				$\frac{40}{360} \times 2 \times \pi \times 7$ oe
				40.40
			AI	4.8 – 4.9

Pearson Edexcel - Sample Paper 3 - (Calculator) Higher Tier

	252	P1 For start to process eg. radius = 12 ÷ 4 (=3) M1 Method to find area of trapezium or semicircle or circle P1 Process to find area of the shaded region A1 251.7 – 252
--	-----	--

Pearson Edexcel - Thursday 26 May 2016 - Paper 1 (Non-Calculator) Higher Tier

15.

12	100 – 25π		M1 for $\pi \times 5 \times 5$ or 25π M1 for $(10 \times 10^{-4} \pi \times 5 \times 5^{3})$ A1 for $100 - 25\pi$ oe NB: ignore the inclusion of any units.
----	-----------	--	--

Pearson Edexcel - Thursday 26 May 2016 - Paper 1 (Non-Calculator) Higher Tier

16.

25	$\frac{1}{4} - \frac{\sqrt{6}}{12}$	M1 for $\frac{1}{2} \times \frac{\sqrt{2}}{2} \times \frac{\sqrt{2}}{2}$ or $\frac{1}{2} \times \frac{\sqrt{2}}{2} \times \frac{\sqrt{3}}{3}$ M1 for $\frac{1}{2} \times \frac{\sqrt{2}}{2} \times \frac{\sqrt{2}}{2} - \frac{1}{2} \times \frac{\sqrt{2}}{2} \times \frac{\sqrt{3}}{3}$ A1 for $\frac{1}{4} - \frac{\sqrt{6}}{12}$ oe OR M1 for $(BC =) \frac{\sqrt{2}}{2} - \frac{\sqrt{3}}{3}$ M1 for $\frac{1}{2} \times \left\{ \frac{\sqrt{2}}{2} - \frac{\sqrt{3}}{3} \right\} \times \frac{\sqrt{2}}{2}$ A1 for $\frac{1}{4} - \frac{\sqrt{6}}{12}$ oe
		M1 for $\frac{2}{4} \times \left\{ \frac{12}{2} - \frac{13}{3} \right\} \times \frac{12}{2}$ A1 for $\frac{1}{4} - \frac{\sqrt{6}}{12}$ oe

Pearson Edexcel - Wednesday 5 November 2014 - Paper 1 (Non-Calculator) Higher Tier

17.

18	(a)	 7.5	2	M1 for $\frac{12}{18}$ oe or $\frac{18}{12}$ oe or $\frac{12}{5}$ oe or $\frac{5}{12}$ oe A1 cao
	(b)	45		M1 for $\left(\frac{n}{2}\right)^2$ oe or $\left(\frac{n}{2}\right)^2$ oe M1 for complete method to find area of shaded region, eg $36 \times 1.5^2 - 36$ A1 cao (SC B2 for 81)

Pearson Edexcel - Monday 4 March 2013 - Paper 2 (Calculator) Higher Tier

18.

19	$\frac{30}{360} \times \pi \times 15^2$	58.8	2	M1 for a correct method to find the area of sector <i>OAB</i> A1 for answer in range 58.8 – 58.9125

Pearson Edexcel - Tuesday 6 November 2012 - Paper 1 (Non-Calculator) Higher Tier

12	•	36 – 9π	3	M1 for $\pi \times 6 \times 6$ or 36π seen value 113.03-113.2 M1 for $(12 \times 12 - {}^4\pi \times 6 \times 6{}^4) \div 4$ or value 7.7-7.8 A1 for $36 - 9\pi$ oe OR M1 for $\pi \times 6 \times 6 \div 4$ or 9π seen or value 28.2-28.3 M1 for $6 \times 6 - {}^4\pi \times 6 \times 6 \div 4{}^4$ or value 7.7-7.8 A1 for $36 - 9\pi$ oe NB: for M marks π may be given numerically.

Pearson Edexcel - Friday 2 March 2012 - Paper 3 (Non-Calculator) Higher Tier

20.

11	Area of $ABCD = 12^2 = 144$ AN = 3 cm Area of $AND = \frac{1}{2} \times 3 \times 12 = 18$ cm ² MB = 6 cm, $NB = 9$ cm Area of $MBN = \frac{1}{2} \times 6 \times 9 = 27$ cm ² Area of shaded region = $144 - 27 - 18$ OR AN = 3 cm or $BN = 9$ cm Area of rect X on $CM = 6 \times 9 = 54$ Area of triangle $\mathbf{Y} = \frac{1}{2} \times 6 \times 9 = 27$ Area of top triangle $\mathbf{Z} = \frac{1}{2} \times 3 \times 12 = 18$ Area of shaded region = $54 + 27 + 18$	99 cm ²	6	B1 $AN = 3$ or $BN = 9$ or $CM = 6$ or $MB = 6$ M1 Area of $ABCD = 12 \times 12$ (= 144) M1 Area of $AND = \frac{1}{2} \times '3' \times 12$ (=18) M1 Area of $MBN = \frac{1}{2} \times '6' \times '9'$ (=27) M1 (dep on at least 1 previous M1) for (Area of CMND =) '144' - '18' - '27' A1 cao OR B1 $AN = 3$ or $BN = 9$ or $CM = 6$ or $MB = 6$ M1 Area of rect on $CM = '6' \times '9'$ (=54) M1 area of adj $\Delta = \frac{1}{2} \times '6' \times '9'$ (=27) M1 area of top $\Delta = \frac{1}{2} \times '3' \times 12$ (=18) M1 (dep on at least 1 previous M1) for '54'+'27'+'18' A1 cao
11 (contd)	OR $AN = 3 \text{ cm or } BN = 9 \text{ cm}$ Area of $CNM = \frac{1}{2} \times 6 \times 9 = 27 \text{ cm}^2$ Area of $CND = \frac{1}{2} \times 12 \times 12 = 72 \text{ cm}^2$ Area of shaded region = 72 + 27 OR Area of $PDN = \frac{1}{2} \times 3 \times 12 = 18 \text{ cm}^2$ Area of $CMNP = \frac{1}{2} \times (12 + 6) \times 9 = 81 \text{ cm}^2$ Area of shaded region = 18 + 81			OR B1 $AN = 3$ or $BN = 9$ or $CM = 6$ or $MB = 6$ M2 Area of $CNM = \frac{1}{2} \times {}^{1}6 \times {}^{9}{}^{9}$ (=27) M1 Area of $CND = \frac{1}{2} \times 12 \times 12$ (= 72) M1 (dep on at least 1 previous M1) for '72' + '27' A1 cao OR B1 $AN = 3$ or $BN = 9$ or $CM = 6$ or $MB = 6$ M1 Area of $PDN = \frac{1}{2} \times {}^{1}3 \times 12$ (=18) M2 Area of $CMNP = \frac{1}{2} \times (12 + {}^{6}1) \times {}^{9}1$ (=81)

Pearson Edexcel - Monday 5 March 2012 - Paper 4 (Calculator) Higher Tier

21.

= 3200 × 0.573576 = 1835 Area of segment = 1954 – 1835 M1 (dep on at least one M1 scored) for the intention t find area of sector <i>OABC</i> - area of triangle <i>OAC</i> A1 for answer in the range 118 to 120 (B3 SC for Rads: 3324(.953305) or Grads: 282(.7733)	Area of triangle $= \frac{1}{2} \times 80 \times 80 \times \sin 35$ 1954 to 1955 M1 for $\frac{1}{2} \times 80 \times 80 \times \sin 35$ or $80 \times \sin 17.5 \times 80 \times \cos 17.5$ or sight of value range 1835 to 1836	23 Area of sector = $\frac{35}{360} \times \pi \times 80 \times 80$	23	$\frac{35}{360} \times \pi \times 80 \times 80$ =\frac{35}{360} \times 20106.19 = 1954 Area of triangle =\frac{1}{2} \times 80 \times 80 \times \sin 35 = 3200 \times 0.573576 = 1835	119	or $\frac{360}{35}$ oe or $10.28(5)$ seen or 10.29 seen or	the rang
--	--	---	----	--	-----	--	----------

M1 (dep on at least 1 previous M1) for '18' + '81'
A1 cao

Pearson Edexcel - Friday 10 June 2011 - Paper 4 (Calculator) Higher Tier

22.

5	$\pi(6)^2 - \pi(5)^2$	34.6	3	M1 for $\pi(6)^2$ oe or $\pi(5)^2$ oe or 113
	= 113(.0973) - 78.5(398)			or 78.5
	=34.55751919			M1 for $\pi(6)^2 - \pi(5)^2$ oe
				A1 for 34.5 - 34.6

Pearson Edexcel - Friday 11 June 2010 - Paper 4 (Calculator) Higher Tier

23.

26	$\frac{40}{360} \times \pi \times 8^2 - \frac{1}{2} \times 8^2 \times \sin 40^\circ$ = 22.34 20.569 OR $\frac{40}{360} \times \pi \times 8^2 - 8 \times \sin 20^\circ \times 8 \times \cos 20^\circ$ = 22.34 20.569	1.77	5	M1 for $\frac{40}{360}$ oe seen or $0.1\dot{1}$ seen or $\div 9$ M1 for $\frac{40}{360} \times \pi \times 8^2$ oe or sight of 22.3-22.35 M1 for $\frac{1}{2} \times 8^2 \times \sin 40^\circ$ or $8 \times \sin 20 \times 8 \times \cos 20$ or sight of 20.56-20.57 M1 (dep on at least one M1 scored) for the intention to find the difference between the area of triangle <i>OPS</i> and the area of sector <i>OPRS</i>
				and the area of sector OPRS

OCR GSCE – Thursday 6 June 2019 – Paper 5 (Non-Calculator) Higher Tier

15	$\frac{x}{360} \times \pi \times 6^2$ or $\frac{[\pi \times]6^2}{[\pi \times]6}$ or shows $\pi \times 6^2$ and $\frac{1}{6}$ oe	M1	Accept 36 for 6 ²	x = angle AOX , condone any variable used For M1 may be seen in stages e.g. M1 for $36 \pi + 6$
	$\frac{x}{360} [\times \pi] \times 6^2 = 6[\pi] \text{ or } 360 + 6$	M1dep	Dep on previous M1	
	[x =] 60	A1		Must earn M1M1 before awarding A1
	$\frac{AX}{6} = \sin t h e i r 60 \text{ oe}$	M1	Dep on 0 < their 60 < 90 Accept use of cos 30 or cos 60 and Pythagoras' or sine rule with 90	Do not accept assumption that OX = 3 without any evidence
	AX = $6 \times \frac{\sqrt{3}}{2} = 3\sqrt{3}$ or $\frac{3\sqrt{3}}{6} = \frac{AX}{6}$, AX = $3\sqrt{3}$	M2	or M1 for sin60 = $\frac{\sqrt{3}}{2}$ or cos 30 = $\frac{\sqrt{3}}{2}$	Beware circular methods using $3\sqrt{3}$ leading to 60, this can only score M1 maximum for $\sin 60 = \frac{\sqrt{3}}{2}$
	6 6		To award 6 marks, there must be no errors seen	but ignore circular methods if alongside a correct method

OCR GSCE – Thursday 8 November 2018 – Paper 5 (Non-Calculator) Higher Tier

25.

12	15π	5	B3 for [angle at centre]= 150	
			or sector is $\frac{5}{12}$ oe of circle	
			or M2 for $\frac{[360\times]5\pi}{2\times\pi\times6}$ or better	
			or M1 for $[\frac{\theta}{360} \times] 2 \times \pi \times 6$ oe	
			M1 for $\frac{their\theta}{360} \times \pi \times 6^2$ oe	Independent

OCR GSCE – Tuesday 6 November 2017 – Paper 5 (Non - Calculator) Higher Tier

26.

1	(a)	tangent	1	Ignore spelling providing intention is clear
	(b)	segment	1	Ignore spelling providing intention is clear

OCR GSCE – Wednesday 8 November 2017 – Paper 6 (Calculator) Higher Tier

•		40.7	-	45	-
8		13.7	5	M4 for $\frac{45}{360} \times 2 \times \pi \times 6$ +	
				$\frac{45}{360} \times 2 \times \pi \times 2.5 + 2 \times 3.5 \text{ oe soi}$	by 13.67 to 13.68
				OR 45	
				M3 for $\frac{45}{360} \times 2 \times \pi \times 6$ oe and	
				$\frac{45}{360} \times 2 \times \pi \times 2.5 \text{ oe soi}$	by 4.71 and 1.96 or by 6.67 to 6.68
				OR 45	
				M2 for $\frac{45}{360} \times 2 \times \pi \times 6$ oe or	
				$\frac{45}{360} \times 2 \times \pi \times 2.5$ oe soi or	by 4.71 or 1.96or 53.4
				$2 \times \pi \times 6 + 2 \times \pi \times 2.5$ oe soi	
				M1 for $2 \times \pi \times 6$ oe or $2 \times \pi \times 2.5$ oe soi	by 37.699 to 37.7 or 15.7
				If 0 scored SC2 for $\frac{45}{360} \times \pi \times 6^2$ oe	
				and $\frac{45}{360} \times \pi \times 2.5^2$ oe	Method marks may be awarded for multiples of <i>π</i> seen in correct working.
				soi by 14.1 and 2.45	Eg.
				or by 11.6 to 11.7 OR	$\frac{45}{360} \times 2 \times \pi \times 6 = \frac{3}{2}\pi$
				SC1 for $\frac{45}{360} \times \pi \times 6^2$ oe or	
				$\frac{45}{360} \times \pi \times 2.5^2 \text{ oe}$	$\frac{45}{360} \times 2 \times \pi \times 2.5 = \frac{5}{8}\pi$
				360 soi by 14.1 or 2.45	
				-	

AQA GSCE – Tuesday 11 June 2019 – Paper 3 (Calculator) Higher Tier 28.

	$\frac{x}{360} \times \pi \times (1.5r)^2$ or $\frac{1}{160} \pi x r^2$ or 0.019 $x r^2$ or $\frac{2x}{360} \times \pi \times r^2$ or $\frac{1}{180} \pi x r^2$ or 0.017 $x r^2$	M1	oe eg (working in radians) $\frac{1}{2} \times (1.5r)^2 \times x \text{ or } \frac{1}{2} \times r^2 \times 2x$		
16	$\frac{1}{160} \pi xr^2$ and $\frac{1}{180} \pi xr^2$ and A or $0.019xr^2$ and $0.017xr^2$ and A	A1	oe eg (working in radians) $\frac{9}{8} r^2 x \text{ and } r^2 x \text{ and A}$		
	Additional Guidance				
	Methods must be algebraic, containing x , π and r				
	If a box is not ticked, must say 'A' without contradiction in working to award M1A1				
	To award A1 their areas must be in a comparable form eg $\frac{2.25}{360}\pi xr^2 \text{ and } \frac{2}{360}\pi xr^2 \text{ and A ticked}$				
	Ignore further incorrect working after A1 scored				

AQA GSCE – Thursday 2 November 2017 – Paper 1 (Non - Calculator) Higher Tier 29.

	π × 6 × 6 or 36π or [113, 113.112] or 9 × [3.14, 3.142] or [28.26, 28.3]	M1	oe accept [3.14, 3.142] for π	
	9π or 9×π or π9 or π×9	A1		
7	Additional Guidance			
	36π followed by an incorrect method eg $36\pi \div 2 = 18\pi$ with answer 18π			M1A0
	Answer of 9π from $\pi \times 3^2$	M0A0		
	9π and [28.26, 28.3] given on answer I		M1A0	
	πr^2 stated but followed by 36 or 9			

AQA GSCE – Thursday 6 November 2017 – Paper 2 (Calculator) Higher Tier 30.

	Alternative method 1		
	$(\frac{1}{2} \times) \pi \times 25 \times 25$ or 625π or 312.5π or $[1962.5, 1964]$ or $[981, 982]$ or $\pi \times 12 \times 12$ or 144π or $[452, 452.45]$	M1	oe Area of circle or semicircle radius 25 or area of circle radius 12
	$\frac{150}{360}$ or $\frac{5}{12}$ or 0.41(6) or 0.417 or 0.42 or $\frac{360}{150}$ or $\frac{12}{5}$ or 2.4	M1	May be seen in two steps eg × 150 ÷ 360
22	their $\frac{150}{360} \times \pi \times 12 \times 12$ or $\pi \times 12 \times 12 +$ their $\frac{360}{150}$ or 60π or [188.4, 188.52]	M1dep	oe dep on M2 Area of sector
	their [188.4, 188.52] (× 100) their [981, 982] or [0.19, 0.1922] or [19, 19.22]	M1dep	oe dep on M3 their [981, 982] must be the area of semicircle radius 25
	[19, 19.22] and No or [0.19, 0.1922] and 0.2 and No	A1	

Mark scheme continues on the next page

	Alternative method 2		
	$(\frac{1}{2} \times) \pi \times 25 \times 25$ or 625π or 312.5π or $[1962.5, 1964]$ or $[981, 982]$ or $\pi \times 12 \times 12$ or 144π or $[452, 452.45]$	M1	oe Area of circle or semicircle radius 25 or area of circle radius 12
22	$\frac{150}{360}$ or $\frac{5}{12}$ or 0.41(6) or 0.417 or 0.42 or $\frac{360}{150}$ or $\frac{12}{5}$ or 2.4	M1	May be seen in two steps eg × 150 ÷ 360
	their $\frac{150}{360} \times \pi \times 12 \times 12$ or $\pi \times 12 \times 12 \div$ their $\frac{360}{150}$ or 60π or [188.4, 188.52]	M1dep	oe dep on M2 Area of sector
	their [188.4, 188.52] × 5 or [942, 942.6]	M1dep	oe dep on M3
	[942, 942.6] and [981, 982] and No	A1	oe eg 300π and 312.5π and No

Mark scheme continues on the next page

Additional Guidance is on the next page

	Alternative method 3			
	$(\frac{1}{2} \times) \pi \times 25 \times 25$ or 625π or 312.5π or $[1962.5, 1964]$ or $[981, 982]$ or $\pi \times 12 \times 12$ or 144π or $[452, 452.45]$	M1	oe Area of circle or semicircle radius 25 or area of circle radius 12	
	0.2 × their [981, 982] or 62.5π or [196.2, 196.4]	M1dep	oe dep on 1st M1 their [981, 982] must be the area of semicircle radius 25	
22	$\frac{150}{360}$ or $\frac{5}{12}$ or 0.41(6) or 0.417 or 0.42 or $\frac{360}{150}$ or $\frac{12}{5}$ or 2.4	M1	May be seen in two steps eg × 150 ÷ 360	
	their $\frac{150}{360} \times \pi \times 12 \times 12$ or $\pi \times 12 \times 12 \div$ their $\frac{360}{150}$ or 60π or [188.4, 188.52]	M1dep	oe dep on 1st M1 and 3rd M1 Area of sector	
	[188.4, 188.52] and [196.2, 196.4] and No	A1	oe eg 60π and 62.5π and No	
	Additional Guidance			
	Alt 3 20% of [981, 982] does not score 2nd M1 unless evaluated correctly			

AQA GSCE – Thursday 8 June 2017 – Paper 2 (Calculator) Higher Tier 31.

	15 ² + 26 ² – 2 × 15 × 26 × cos 38 or [286, 286.4] or [16.9, 17]	M1	May be seen in a square ro May be seen on diagram	oot	
	$\frac{108}{360}$ or 0.3 or $\frac{360}{108}$ or 3.33()	M1	oe eg 108 ÷ 360 or 30% May be seen in two steps eg × 108 ÷ 360		
	their $\frac{108}{360} \times \pi \times [286, 286.4]$ or $\pi \times$ their $[286, 286.4] \div$ their $\frac{360}{108}$ or $[269, 272.4114]$	M1dep	dep on 1st and 2nd M1 oe eg $\frac{108}{360} \times \pi \times \text{(their [10])}$	6.9, 17]) ²	
	$(2 \times) \frac{1}{2} \times 15 \times 26 \times \sin 38$ or [120, 120.1] or [240, 240.2]	M1	oe		
25	[509, 512.6114] and 510	A1	Must see a value in range and 510	[509, 512.6114]	
	Additional Guidance				
	15 × 26 × sin 38 scores 4th M1 unless				
	If (sector) 270 and (2 triangles) 240 for	M4A1			
	Working back from 510. Apply scheme				
	Assuming angle AEB = 72 and then us lead to area = 510 to 2sf but can score				
	$BE = \frac{26}{\sin 72} \times \sin 38 = 16.8 \text{ (or 17)}$			MO	
	$\frac{108}{360} \times \pi \times 16.8^2 = 266$ $2 \times \frac{1}{2} \times 1$	$\times \pi \times 16.8^2 = 266$ $2 \times \frac{1}{2} \times 15 \times 26 \times \sin 38 = 240.2$			
	506.2 → 510	A0			
	BE = [16.9, 17] seen with no working scores first M1 (and possibly all other marks)				
	BE = 35 ÷ 2 = 17.5 → 17 does not score first M1				